导师姓名:喻高航教授
所属学院:理学院
导师类别:博士生导师、硕士生导师
研究方向:机器学习中的自适应控制与优化/张量分析与计算
博士招生:自动化学院(人工智能学院)
硕士招生:理学院
联系方式:
个人简介:
u 张量数据深度学习/统计学习的优化理论方法及其应用(LD19A010002),浙江省自然科学基金重大项目,2019.1-2022.12,45万,主持
u W. Hu, S. Li, W. Zheng, Y. Lu, G. Yu*,Robust sequential subspace clustering via ℓ1-norm temporal graph, Neurocomputing 383(2020), 380-395.
u W. Hu, S. Li, J. Huang, T. Wang, G. Yu*,Computing the nearest polynomial to multiple given polynomials with a given zero via l2, q-norm minimization, Theor. Comput. Sci. 809(2020), 394-406.
u G. Yu, Y. Song,Y. Xu,Z. Yu,Spectral projected gradient methods for generalized tensor eigenvalue complementarity problems,Numerical Algorithms, 80(2019), 1181–1201.
u J.Huang, G. Zhou, G. Yu,Orthogonal tensor dictionary learning for accelerated dynamic MRI, Med. Biol. Engineering and Computing 57(9) (2019)1933-1946.
u W. Hu, Z. Wang, S. Liu, X. Yang, G. Yu, J. Zhang, Motion Capture Data Completion via Truncated Nuclear Norm Regularization. IEEE Signal Process. Lett. 25(2018)258-262.
u Y. Sun, G. Yu, On Strong Controllability for Planar Affine Nonlinear Systems, International Journal of Robust and Nonlinear Control, 28(2018) 2668-2677.
u W.Xue, W. Zhang and G. Yu*, Least Absolute Deviations Learning of Multiple Tasks, Journal of Industrial and Management Optimization, 14(2018)719-729.
u S. Niu,J.Huang,Z.Bian, D.Zeng,G.Yu*, Z.Liang,J.Ma,Iterative reconstruction for sparse-view X-ray CT using alpha-divergence constrained total generalized variation minimization, Journal of X-Ray Science and Technology, 25(2017) 673-688.
u G.Yu, Z.Yu, Y.Xu, Y.Song, An adaptive gradient method for computing generalized tensor eigenpairs,Computational Optimization and Applications, 65(2016)781-797.
u Y.Song andG.Yu, Properties of Solution Set of Tensor Complementarity Problem, Journal of Optimization Theory and Applications, 170 (2016) 85-96.
u S.Niu, S. Zhang, J. Huang, Z.Bian, W. Chen, G. Yu*, Z. Liang, J. Ma, Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations, Neurocomputing 197(2016) 143-160.
u G. Yu, W. Xue, Y. Zhou, A nonmonotone adaptive projected gradient method for primal-dual total variation image restoration. Signal Processing 103 (2014) 242-249.
u L. Qi, G. Yu*, Y. Xu, Nonnegative diffusion orientation distribution function, Journal of Mathematical Imaging and Vision, 45 ( 2013) 103-113.
u G. Yu, S.Niu, J. Ma, Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints, Journal of Industrial & Management Optimization, 9(2013) 117-129.
u G.Yu,Nonmonotone spectral gradient-type methods for large-scale unconstrained optimization and nonlinear systems of equations, Pacific Journal of Optimization, 7 (2011), 387-404.
u L. Qi, G. Yu and X. Wu, Higher order positive semi-definite diffusion tensor imaging, SIAM Journal on Imaging Sciences, 3 (2010) 416-433.
u G. Yu, A derivative-free method for solving nonlinear equations, Journal of Industrial and Management Optimization, 6 (2010) 149-160.
u G. Yu, L. Qi, Y. Sun, Y. Zhou, Impulse noise removal by a nonmonotone adaptive gradient method,Signal Processing, 90(2010) 2891-2897.
u G.Yu, J. Huang, Y. Zhou, A descent spectral conjugate gradient method for impulse noise removal, Applied Mathematics Letters, 23(2010) 555-560.
u G. Yu, L. Qi and Y. Dai, On nonmonotone Chambolle gradient projection algorithms for total variation image restoration, Journal of Mathematical Imaging and Vision, 35 (2009) 143-154.
u G. Yu, L. Guan, W. Chen, Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization, Optimization Methods and Software, 23 (2008) 275-293.
u G. Yu, L. Guan, G. Li, Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property, Journal of Industrial & Management Optimization, 4(2008)565-579.
u S. Niu, Z. Bian, D. Zeng,G. Yu, et al., Total image constrained diffusion tensor for spectral computed tomography reconstruction, Applied Mathematical Modelling, Volume 68, (2019) 487-508.
u S. Niu, G. Yu, et al., Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction,Inverse Problems,vol. 34, pp. 024003, 2018
u W. Hu, L.Lu, C. Yin and G. Yu*, A smoothing Newton method for tensor eigenvalue complementarity problems, Pacific Journal of Optimization, 13 (2017) 243-253.